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Abstract. The dispersion spectrum of single hole in a bilayer composed of plane and chain, each described
by t–J model, coupled by t⊥–J⊥ interactions between them, is calculated in terms of self-consistent Born
approximation. It was found that for a weak interlayer coupling the two different quasiparticle bands,
plane-like and chain-like bands, show a minimum at (π/2, π/2) and a maximum at (0, 0) or (π, π). In
plane-like dispersion we can find an anomalous “flat” region near Fermi surface along the antiferromag-
netic Brillouin zone boundary, which favors the formation of the van-Hove singularities. With increasing
interlayer coupling, a large modification of the dispersions is carried out, the minimum deviates from (π/2,
π/2) and the energy gap of the two bands decreases and finally disappears when the vertical coupling is
larger enough. The shapes of the QP bands are sensitive to the vertical hopping t⊥ rather than the vertical
exchange energy J⊥. As the interlayer coupling increases, the shapes of the two QP bands suggest that
the chain-like band approaches to that of quasi-one dimensional model, and the plane-like band undergoes
the one layer t− t′–J models’ band.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 75.50.Ee Antiferromagnetics –
74.20.-z Theories and models of superconducting state

1 Introduction

The investigation of hole QP (quasiparticles) dispersion is
of significant importance for the searching of the generic
features of the high-temperature superconductors. Recent
angle-resolved photoemission experiments (ARPES) for
Bi2Sr2CaCu2O8 (Bi2212) and Y–Ba–Cu–O near optimal
doping showed a very anomalous flat region of their en-
ergy dispersion around (π, 0) which is absent in the mea-
surement on the insulating copper oxide Sr2CuO2Cl2 [1].
In addition, the observed small bandwidth (∼ 2J) sug-
gests that the strong correlation is crucial for a proper
description of carriers in the cuprates. Consequently, the
theoretical calculations [2,3] in the framework of t–J-like
model with single or more CuO2 planes agree with exper-
imental results. It is well established that almost degen-
erate dispersion along the magnetic Brillouin zone (MBZ)
boundary [(π, 0)−(0, π) line] is an intrinsic property of the
pure t–J model, and it can be modulated by any small
additional interlayer coupling, such as t⊥ between two
planes or hopping integral, or the next-nearest-neighbor
hopping t′.

An increasing interest in studying the structure of
CuO3 chains in cuprates is set up recently. The theo-
retical investigations of the multiband Hamiltonian [4–6]
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describing the CuO3 chains of YBa2Cu3O7−δ (YBCO)
have shown a good agreement with experimental obser-
vations. The electronic structure of the one-dimensional
CuO3 subsystem in YBCO can determine the doping of
the superconducting CuO2 planes which are sometimes
described by simple 2D tight binding bands with first and
second nearest neighbor hopping. A stack of CuO2 planes
weakly coupled through a transverse hopping t⊥ can be
taken as a simple model. In Bi2Sr2CaCu2O8 [7] t⊥ is small
in the order of 10−1 meV. But in the optimum doped
YBCO it is much large with the order of a few tens of meV
that is almost in the same order of magnitude as the in-
plane hopping integral, which indicates that this material
may be fairly three dimensional. The CuO chains coupled
to the planes in YBCO participate significantly in the su-
perconductivity [8–10]. In order to examine the important
influence of chains on the superconductivity, we can sim-
ply limit ourselves here to a model of two layers, one is a
plane layer with tetragonal symmetry, while the other is a
chain layer with orthorhombic symmetry [11]. In this pa-
per we propose a model which consists of plane and chain
layers with an antiferromagnetic (AF) spin interaction be-
tween the two layers. It was found that with strongly in-
creasing the interlayer coupling t⊥–J⊥, the quasiparticle
dispersions change much more as expected.

The paper is organized as following: in Section 2 we
generalize a bilayer model, one layer is square lattice plane,
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Fig. 1. Schematic illustration of the model on a plane-chain
coupled bilayer with intralayer coupling t–J and interlayer cou-
pling t⊥–J⊥.

and the other is chain, which are described by the two–
dimension and one-dimension t–J model respectively, and
coupled by t⊥ and J⊥ between the two layers. In Sec-
tion 3 we analysis the Green’s functions of the model in
self-consistent Born approximation. Numerical results for
self-energies and spectral functions are summarized in Sec-
tion 4. This section also contains the quasiparticle dis-
persion, spectral weight, bandwidth and discussion of the
properties of this model.

2 Plane-chain coupled t–J model

The Hamiltonian of the t–J model considered here for
plane-chain bilayer cuprate oxide shown in Figure 1 is ex-
pressed as

H = −
∑
〈ij〉,σ

tα(c̃(α)+
iσ c̃

(α)
jσ +H.c.) +

∑
〈ij〉,α

JαS
α
i S

α
j

− t⊥
∑
i

(c̃(1)+
iσ c̃

(2)
iσ +H.c.) + J⊥

∑
i

S
(1)
i S

(2)
i . (1)

Here α = 1, 2 labels plane and chain respectively, i labels
sites in each layer, and i and j are nearest neighbors in the
same plane. c̃(α)

iσ = c
(α)
iσ (1−ni,−σ) are hole creation opera-

tor with the constraint of no double occupancy. We set an
antiferromagnetic interlayer spin coupling J⊥ between the
two layers. The kinetic part has a vertical link t⊥. The sin-
gle hole motion is studied in a two-dimensional Heisenberg
antiferromagnet [2,12,13], and the numerical solution by
self-consistent method within the Born approximation is
in good quantitative agreement with previous numerical
diagonalization studies. Hence this method may provide
a valuable scheme for further work on spectral proper-
ties, quasi-particle dispersion, etc. Here for long-range AF
order the spin dynamics is treated in linear spin-wave the-
ory and the hole is described as well-known spinless hole,
with polaronlike coupling between holes and spin waves.
According to the approach proposed by Schmitt-Rink
et al. [13], the Hamiltonian of equation (1) becomes

H = Ht +HJ ,

HJ =
∑
q

(
ω+(q)α+

q αq + ω−(q)β+
q βq

)
, (2)

Ht =
∑
kqi

[
h

(i)+
k h

(i)
k−q [gα1(k, q)αq + gα2(k, q)βq] +H.c.

]
+
∑

h
(1)+
k h

(2)
k−q

[
g121(k, q)αq + g122(k, q)βq

+ g211(k, q)α+
−q + g212(k, q)β+

−q

]
(3)

with spin wave energy ω2
i (q) = 2

(
A2 ±

√
A4 − 4B2

)
, i =

1, 2, and

A2 = a2 + b2 − c2 − d2 − 2e2, (4)

B2 = a2b2 − a2d2 − b2c2 − 2abe2 + (cd− e2)2, (5)

here a = J1 +
J⊥
4

, b =
J2

2
+
J⊥
4

, c = J1γq, d =
1
2
J2ξq,

e =
J⊥
4

, γk =
1
2

(cos kx + cos ky), and ξk = cos kx. The
Bogoliubov transformation factors are

uij(q) = xijy1, (i, j = 1, 2),
uij(q) = xijy2, (i = 1, 2, j = 3, 4),

xi1 = e
[(
ωi(q) + a

)(
ωi(q)− b

)
− cd+ e2

]
, (6a)

xi2 = e
[
bc+ ad− dωi(q)− cωi(q)

]
, (6b)

xi3 = d
[
ω2
i (q)− a2 + c2

]
− ce2, (6c)

xi4 = ω3
i (q)− bω2

i (q) + (c2 + e2 − a2)ωi(q)

+ a2b− bc2 − ae2, (6d)

and

y1 =

√
x13x24 − x14x23

Det
, y2 =

√
x12x21 − x11x22

Det
,

where Det = (x2
11 − x2

12)(x13x24 − x14x23) − (x2
13 −

x2
14)(x11x22−x12x21). The hole-magnon vertex factors are

g111(k, q) =
4t1√
N

[γk−qu11(q) + γku12(q)] ,

g112(k, q) =
4t1√
N

[γk−qu13(q) + γku14(q)] ,

g221(k, q) =
2t2√
N

[ξk−qu21(q) + ξku22(q)] ,

g222(k, q) =
2t2√
N

[ξk−qu23(q) + ξku24(q)] ,

g121(k, q) =
t⊥√
N

[u11(q) + u22(q)] ,

g122(k, q) =
t⊥√
N

[u13(q) + u24(q)] ,

g211(k, q) =
t⊥√
N

[u12(q) + u21(q)] ,

g212(k, q) =
t⊥√
N

[u14(q) + u23(q)] . (7)

We mention the similarity of the Hamiltonian with that of
the classical polaron problem [14,15]. Here the spin waves
play the role of the phonons. For copper-oxides t > J , the
Hamiltonian defined by equations (2, 3) poses a strong-
coupling problem.
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Fig. 2. Spectral functions A1(k, ω): (a) k = (0, 0), (b) k = (π/2, π/2), (c) k = (π, 0), (d) density of states (DOS), for J = 0.4,
t⊥ = 0.7, J⊥ = 0.2.
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Fig. 3. Spectral functions A2(k, ω): (a) k = (0, 0), (b) k = (π/2, π/2), (c) k = (π, 0), (d) density of states(DOS), for J = 0.4,
t⊥ = 0.7, J⊥ = 0.2.
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Table 1. Different quantities associated to the quasiparticle spectrum calculated using a 16 × 16 lattice as function of t⊥ and
J⊥. Energies of QP states E+ and E− at k = (π/2, π/2), bandwidths ∆E+ and ∆E−, relative spectral weights a+ and a− at
the same k point. Energy parameters are in units of t.

t⊥ J⊥ E+(π/2, π/2) E−(π/2, π/2) a+ a− ∆E+ ∆E−

0.1 0.01 −2.211 −1.670 0.345 0.285 0.783 0.416
0.2 0.04 −2.198 −1.658 0.348 0.228 0.747 0.438
0.3 0.09 −2.196 −1.653 0.350 0.292 0.728 0.473
0.4 0.16 −2.20 −1.644 0.348 0.397 0.718 0.454
0.5 0.25 −2.21 −1.737 0.351 0.076 0.340 0.567
0.6 0.36 −2.22 −1.844 0.347 0.191 0.332 0.664
0.7 0.4 −2.25 −1.913 0.343 0.107 0.341 0.733
0.8 0.4 −2.29 −1.986 0.348 0.115 0.301 0.537
1.0 0.4 −2.36 −2.079 0.345 0.144 0.241 0.481

3 Self-consistent Green’s-function approach

From the Hamiltonian of the t–t⊥–J–J⊥ model in equa-
tions (2, 3), describing holons (spinless fermions) strongly
coupled to spin-wave excitations, we calculate the holon
Green’s function as follows:

Gµν = G0
µνδµν +

∑
ρλ

G0
µρΣρλGλν , (8)

with the self-energy

Σµν =
∑
ρλα

gµραGρλαgνλα. (9)

In order to simplify the calculations we set hopping con-
stants t1 = t2 = t, and coupling constants J1 = J2 = J ,
and choose the realistic values of parameters: t = 0.4 eV,
J/t = 0.2 ∼ 0.4 to study the behaviors of the QP states
versus various t⊥ and J⊥ from 0 to 1 (we will refer all
quantities in units of t from now). The iteration steps are
carried out on the 16× 16 sites, and ω mesh was set 1 000
points from −5 to 5.

Figures 2 and 3 show the spectral function Aα =
−1/πImGαα(k, ω), (α = 1, 2), at different momentum for
J = 0.4, t⊥ = 0.7, J⊥ = 0.2. In Figure 2, the quasipar-
ticle peak carriers a substantial percentage of the spec-
tral weight in agreement with the calculations for a single
layer, and it is stronger for the momentum to the bot-
tom of the band. It can be seen that after considering the
AF interaction between plane and chain layers, the shape
of A1(k , ω) describing the plane-like branch is different
from that in reference [3]. The spectral function A1(k, ω)
at k = (0, 0) described by an extra peak located at the
second-lowest energy which is not found in the identical
plane bilayer model is probably due to chain’s effect in this
chain-plane bilayer model. The main influence of chains is
that the spectral weight is largely reduced at (π/2, π/2)
by raising the hole energy at that point. The hole en-
ergy at (π, 0) is slightly enhanced as comparison with that
at (π/2, π/2). In Figure 3 one can see that the spectral
function A2(k, ω) has some extra small peaks at the low-
energy side of the spectrum which is probably set up by
the plane influence. The quasiparticle dispersion relations

E±(k) (plane band E+(k) and chain band E−(k)) are dis-
played in Figure 4 for J = 0.4, t⊥ = 0.7, J⊥ = 0.4, and for
non-coupling situation t⊥ = J⊥ = 0+ as a comparison. It
is noted that the plane-like band has a “flat” region around
the wave vectors k = (π, 0), which is a remarkable fea-
ture of cuprates observed in photoemission experiments.
The anomalous flatness is closely near the minimum at
(π/2, π/2), which has been used to explain the spin gap
in the normal state of cuprates, the hole pockets form-
ing large Fermi surface, and the superconductivity for the
low hole density case [2,3,16]. With the increase of verti-
cal coupling between the two layers, the width of plane-
like band decreases, and the peak around (π, 0) becomes
sharp, which is just like the t–t′–J model [17]. Further-
more, the increase of width of chain-like band is in agree-
ment with a quasi-one dimension model. Table 1 gives the
minimum data, the spectral weight of the QP, as well as
the two bandwidths for various vertical coupling constants
(we choose J⊥/t = (t⊥/t)2). The plane-like and chain-like
bandwidths decrease rapidly at t⊥ = 0.5 and t⊥ = 0.8,
respectively. The spectral weight at k = (π/2, π/2) are
different in the two branches. As the vertical coupling
increases, the spectral weight is approximately constant
for plane-like, but decreases for chain-like band. In Fig-
ure 5a, the overall dispersion shape is not very sensitive
to the exchange coupling J⊥, but it changes drastically
with the hopping t⊥ as shown in Figure 5b. We find that
the minimum of the plane-like band deviates from the
point (π/2, π/2) if the vertical coupling t⊥ is large enough
(t⊥/t = 1.5), which can be explained that the orthorhom-
bic character in chains affects the plane-like spectral upon
a strong vertical link between plane and chain layers. The
energy gap between plane-chain bands disappears at mo-
mentum point (π/2, π/2) and around (π, 0) as t⊥/t = 1.5.

The variations of the two dispersions with t⊥ = 0.3
and J⊥ = 0.09 can be fit by the following trigonometric
functions, namely (see Fig. 6)

E+ = −2.162 + 0.158(coskx + cos ky)2

+ 0.034(cos 2kx + cos 2ky) (10a)

E− = −1.651 + 0.532 cos2 kx. (10b)

Equation (10) includes hopping processes to first- and
second-nearest neighbors on the same sublattice, which
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Fig. 4. Dispersion relations of the quasiparticle bands E±(k)
(chain-like E−(k) and plane-like E+(k)), along symmetry lines
in the Brillouin zone for J = 0.4, t⊥ = 0.7, J⊥ = 0.4 on
a 16 × 16 sites (open square), and for non-vertical coupling
t⊥ = J⊥ = 0+ (open circle).
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Fig. 5. Dispersion relations for (a) J = 0.4, t⊥ = 0.3, J⊥ =
0.1 (square), 0.4 (uptriangle), 0.7 (circle), and (b) J = 0.4,
J⊥ = 0.1, t⊥ = 0.3 (square), 0.7 (uptriangle), 1.5 (circle). The
dispersion shape changes drastically with the coupling t⊥, but
it is not very sensitive to the exchange coupling J⊥.

is suggested by several works on a single-plane [2,16,17].
The imbalance coefficient x3 in equation (10) distinguishes
between a dispersion where the minimum energy for holes
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Fig. 6. One hole dispersion for parameters J = 0.4, t⊥ = 0.3,
J⊥ = 0.09. Open squares belong to the plane-like branch E+,
while open circles correspond to branch E−. The dotted (solid)
line is a fit using trigonometric functions for plane-like (chain-
like) branch.

is on Fermi surface for noninteracting electrons (x3 = 0)
and a case characterizing hole pockets x3 > 0 [18]. Here,
the hole pockets result from the quantum fluctuations in
the ground state rather than a consequence of high-order
processes in t [18,19].

4 Summary

From the study on the motion of a single hole in a quantum
antiferromagnetic model of plane-chain coupled bilayer
within self-consistent Born approximation, we found two
split energy bands, plane-like and chain-like bands. The
anomalous flatness region along AF Brillouin zone bound-
ary occurs in the plane-like band. With increasing inter-
layer coupling, the dispersion shape changes apparently,
and the gap decreases and finally disappears when the
vertical coupling is larger than the magnitude of in-plane
coupling. The quasiparticle energy spectrum depends on
both structures of plane and chain layers. More evolution
of spectrum arises from the vertical hopping t⊥ rather
than vertical exchange energy J⊥. The main contribution
to the QP dispersion relations E±(k) comes from hole
hopping processes on the same sublattice, to avoid dis-
torting the antiferromagnetic background. The extended
van-Hove singularities can occur in plane and chain bilayer
model. With varying vertical coupling constants it sug-
gests that plane-like and chain-like bands display a tran-
sition to one layer t–t′–J model and quasi-one dimension
model respectively. As a whole, the vertical coupling be-
tween plane and chain layers plays a crucial role to the
spectral energy of cuprates.

The work is supported by National Natural Science Founda-
tion.
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